In this presentation I will highlight the interplay between data science and computational science to efficiently solve real life large scale problems . The leading application that I will address is the numerical simulation of the heart function. The motivation behind this interest is that cardiovascular diseases unfortunately represent one of the leading causes of death in Western Countries. Mathematical models based on first principles allow the description of the blood motion in the human circulatory system, as well as the interaction between electrical, mechanical and fluid-dynamical processes occurring in the heart. This is a classical environment where multi-physics processes have to be addressed. Appropriate numerical strategies can be devised to allow an effective description of the fluid in large and medium size arteries, the analysis of physiological and pathological conditions, and the simulation, control and shape optimization of assisted devices or surgical prostheses. This presentation will address some of these issues and a few representative applications of clinical interest.
Acknowledgment: The work presented in this talk is part of the project iHEART that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 740132)